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While kernel methods are the basis of many popular techniques in supervised
learning, they are less commonly used in testing, estimation, and analysis of
probability distributions, where information theoretic approaches rule the roost.
However it becomes difficult to estimate mutual information or entropy if the
data are high dimensional.

We present a method which allows us to compute distances between dis-
tributions without the need for intermediate density estimation. Our approach
allows algorithm designers to specify which properties of a distribution are most
relevant to their problems. Our method works by studying the convergence prop-
erties of the expectation operator when restricted to a chosen class of functions.
In a nutshell our method works as follows: denote by X a compact domain and
let H be a Reproducing Kernel Hilbert Space on X with kernel k. Note that in
an RKHS we have f(x) = 〈f, k(x, ·)〉 for all functions f ∈ H. This allows us to
denote the expectation operator of a distribution p via

µ[p] := Ex∼p[k(x, ·)] and hence Ex∼p[f(x)] = 〈µ[p], f〉 for f ∈ H.

Moreover, for a sample X = {x1, . . . , xm} drawn from some distribution p we
may denote the empirical counterparts via

µ[X ] := 1

m

m∑

i=1

k(xi, ·) and hence 1

m

m∑

i=1

f(xi) = 〈µ[X ], f〉 for f ∈ H.

This allows us to compute distances between distributions p, q via D(p, q) :=
‖µ[p] − µ[q]‖ and empirical samples X, X ′ via D(X, X ′) := ‖µ[X ] − µ[X ′]‖ alike.
One can show that under rather benign regularity conditions µ[X ] → µ[p] at rate

O(m−
1

2 ). Such a distance is useful in a number of estimation problems:

– Two-sample tests whether X and X ′ are drawn from the same distribution.
– Density estimation, where we try to find p so as to minimize the distance

between µ[p] and µ[X ], either by mixture models or by exponential families.
– Independence measures where we compute the distance between the joint

distribution and the product of the marginals via D(p(x, y), p(x) · p(y)).
– Feature selection algorithms which try to find a subset of covariates x max-

imally dependent on the target random variables y.

Our framework allows us to unify a large number of existing feature extrac-
tion and estimation methods, and provides new algorithms for high dimensional
nonparametric statistical tests of distribution properties.


